Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации

Фармацевтический факультет

УТВЕРЖДЕНО Ученым советом Протокол № 10 от 01.11.2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Направление подготовки: 19.03.01 Биотехнология

Профиль подготовки: Фармацевтическая и пищевая биотехнология

Формы обучения: очная

Квалификация (степень) выпускника: Бакалавр

Год набора: 2023

Срок получения образования: 4 года

Объем: в зачетных единицах: 3 з.е.

в академических часах: 108 ак.ч.

Разработчики:

Кандидат химических наук Дрыгунова Л.А.

Оценочные материалы составлены в соответствии с требованиями ФГОС ВО по направлению подготовки 19.03.01 Биотехнология, утвержденного приказом Минобрнауки России от 10.08.2021 № 736, с учетом трудовых функций профессиональных стандартов: "Специалист по промышленной фармации в области производства лекарственных средств", утвержден приказом Минтруда России от 22.05.2017 № 430н; "Специалист по промышленной фармации в области контроля качества лекарственных средств", утвержден приказом Минтруда России от 22.05.2017 № 431н; "Специалист в области биотехнологии биологически активных веществ", утвержден приказом Минтруда России от 22.07.2020 № 441н; "Специалист по валидации (квалификации) фармацевтического производства", утвержден приказом Минтруда России от 22.05.2017 № 434н; "Специалист в области биотехнологий продуктов питания", утвержден приказом Минтруда России от 24.09.2019 № 633н.

1. Планируемые результаты обучения, соотнесенные с планируемыми результатами освоения образовательной программы

ОПК-7 Способен проводить экспериментальные исследования и испытания по заданной методике, наблюдения и измерения, обрабатывать и интерпретировать экспериментальные данные, применяя математические, физические, физико-химические, химические, биологические, микробиологические методы

ОПК-7.1 Осуществляет экспериментальные исследования и испытания по заданной методике, обрабатывает и интерпретирует полученные экспериментальные данные

Знать:

ОПК-7.1/Зн1 Физико-химические, химические,характеристики испытываемых лекарственных средств

ОПК-7.1/Зн2 Технику лабораторных работ при испытаниях лекарственных средств

ОПК-7.1/Зн3 Принципы стандартизации и контроля качества лекарственных средств

ОПК-7.1/Зн4 Фармакопейные методы анализа, используемые для испытаний лекарственных средств

ОПК-7.1/Зн5 Принципы валидации аналитических методик

Уметь:

ОПК-7.1/Ум1 Производить испытания лекарственных средств с помощью химических и физико-химических методов в соответствии с фармакопейными требованиями, нормативной документацией и установленными процедурами

ОПК-7.1/Ум2 Эксплуатировать лабораторное оборудование и помещения в соответствии с установленными требованиями

ОПК-7.1/Ум3 Оформлять документацию по испытаниям лекарственных средств

ОПК-7.1/Ум4 Использовать методы математической статистики, применяемые при обработке результатов испытаний лекарственных средств Владеть:

ОПК-7.1/Нв1 Подготовка лабораторного оборудования, материалов и объектов, приготовление растворов для испытаний лекарственных средств

ОПК-7.1/Нв2 Выполнение требуемых операций в соответствии с фармакопейными требованиями

ОПК-7.1/Нв3 Регистрация, обработка и интерпретация результатов проведенных испытаний лекарственных средств

ОПК-7.2 Проводит наблюдения и измерения, применяя математические, физические, физико-химические, биологические и микробиологические методы.

Знать:

ОПК-7.2/Зн1 Методики определения качества биотехнологической продукции

ОПК-7.2/Зн2 Показатели качества биотехнологической продукции

ОПК-7.2/Зн3 Виды брака и его учет в производстве биотехнологической продукции *Уметь*:

ОПК-7.2/Ум1 Производить анализ качества сырья для биотехнологического производства в соответствии с регламентом

ОПК-7.2/Ум2 Определять активность действующего вещества в готовом биотехнологическом препарате

Владеть:

ОПК-7.2/Нв1 Проведение контроля качества промежуточной и готовой биотехнологической продукции

2. Шкала оценивания

2.1. Уровни овладения

Компетенция: ОПК-7 Способен проводить экспериментальные исследования и испытания по заданной методике, наблюдения и измерения, обрабатывать и интерпретировать экспериментальные данные, применяя математические, физические, физико-химические, химические, биологические, микробиологические методы.

Индикатор достижения компетенции: ОПК-7.1 Осуществляет экспериментальные исследования и испытания по заданной методике, обрабатывает и интерпретирует полученные экспериментальные данные.

Уровень	Характеристика	Оценка в баллах
Повышенный	студент демонстрирует всестороннее и глубокое	80-100
	знание программного материала;	
	студент свободно выполняет задания и решает	
	задачи по программе курса;	
	студент усвоил основную и знаком с	
	дополнительной литературой, рекомендованной	
	программой;	
	проявивший творческие способности в	
	понимании, изложении и применении учебно-	
	программного материала.	
Базовый	студент демонстрирует полное знание	70-79
	программного материала,	
	студент усвоил основную литературу,	
	рекомендованную программой,	
	способен к самостоятельному пополнению и	
	обновлению знаний в ходе дальнейшего обучения	
	и профессиональной деятельности.	
Пороговый	студент демонстрирует знание основного учебно-	60-69
	программного материала в объеме, необходимом	
	для дальнейшего обучения и профессиональной	
	деятельности,	
	выполняет задания, предусмотренные	
	программой,	
	ознакомлен с основной литературой по	
	программе курса.	
	обладает необходимыми знаниями для	
	устранения погрешности в ответе под	
	руководством преподавателя.	
Ниже порогового	студент демонстрирует пробелы в знании	0-59
	основного учебно-программного материала,	
	допускает принципиальные ошибки в	
	выполнении предусмотренных программой	
	заданий,	

Индикатор достижения компетенции: ОПК-7.2 Проводит наблюдения и измерения, применяя математические, физические, физико-химические, биологические и микробиологические методы..

Уровень	Характеристика	Оценка в баллах
		-

2.2. Формирование оценки по результатам промежуточной аттестации Промежуточная аттестация: Зачет, Четвертый семестр.

11positioneyitto titta	t commeenterigist. Scrient, Temoephion	a cemeenip.
Оценка	зачтено	не зачтено
Итоговый рейтинг	60-100	0-59

3 Контрольные мероприятия по лисциплине

	э. контрольные мероприятия по дисциплине
Вид контроля	Форма контроля/Оценочное средство
Текущий контроль	Тестовый контроль
	Решение задач
	Устный опрос
	Письменный опрос
	Отчет по лабораторной работе
	Контрольная работа
	Опрос
Промежуточная	Зачет
аттестация	

№	Наименование раздела	Вид контроля/ используемые оценочные материалы	
п/п	панменование раздела	Текущий	Промежут. аттестация
1	Оптические методы анализа	Тестовый контроль	Зачет
		Решение задач	
		Письменный опрос	
		Отчет по лабораторной	
		работе	
		Контрольная работа	
2	Спектроскопия ядерного магнитного резонанаса	Решение задач	Зачет
		Устный опрос	
		Контрольная работа	
3	Масс-спектрометрический анализ	Решение задач	Зачет
		Опрос	
4	Комбинированное использование методов ФХМА	Решение задач	Зачет
	для количественного определения и	Отчет по лабораторной	
	установления строения соединений	работе	
	<u>-</u>	Контрольная работа	

4. Оценочные материалы текущего контроля

Раздел 1. Оптические методы анализа

Тема 1.1. Основы молекулярно-абсорбционной спектроскопии Форма контроля/оценочное средство: Контрольная работа Вопросы/Задания:

1. Выполните следующие задания:

Оптическая плотность стандартного раствора вещества с концентрацией $2 \cdot 10$ -4 моль/л в кювете 10 мм равна 0.392. Рассчитайте величину молярного коэффициента поглощения этого вещества в растворе. Чему равна концентрация этого вещества в растворе с оптической плотностью 0.568? (М = 289 г/моль).

- 2. Навеску глюкозы массой 0.098 г перенесли в химический стакан и добавили 5 мл очищенной воды. Измерили показатель преломления полученного раствора, n = 1.3357. Рефрактометрический фактор глюкозы равен 0.00142, а показатель преломления воды при данной температуре 1.3330. Рассчитайте массовую долю глюкозы в препарате.
- 3. Навеску NaCl массой 0.100 г перенесли в химический стакан, добавили 5 мл очищенной воды. Измерили показатель преломления полученного раствора n = 1.3362. Рассчитайте массовую долю NaCl в препарате. Воспользуйтесь необходимыми справочными таблицами.
- 4. Оптическая плотность стандартного раствора рибофлафина с содержанием $2.5 \cdot 10$ -2 мг/мл при толщине кюветы 10 мм составляет 0.324. Рассчитайте содержание рибофлавина и его массу в 50 мл анализируемого раствора, если при фотометрировании в тех же условиях оптическая плотность равна 0.486. Чему равен молярный коэффициент поглощения рибофлавина? М = 376 г/моль.
- 5. Объясните различия в спектрах поглощения п-этиламинобензойной кислоты, снятой в этаноле (288 нм, є 19000) и хлороводородной кислоте (270 нм, є 970).
- 6. Соотнесите электронные спектры со структурами бензиламина, м-толуидина и хлорида анилиния. Ответ обоснуйте.
- 7. Каковы причины появления электронного спектра ацетиленовых соединений? От чего зависит положение и интенсивность полос поглощения?
- 8. Под действием УФ облучения происходит изомеризация 3 фенилпропена в 1 фенилпропен. Определите, какая из кривых, приведённых на рис. соответствует исходному соединению, а какая продукту изомеризации.
- 9. Как изменяются положение и интенсивность полос поглощения $\pi \to \pi^*$ перехода в электронном спектре алкенов при:
- □ увеличении числа этиленовых хромофоров в сопряжении;
- появлении ауксохромного заместителя к этиленовому хромофору;
- □ появлении метиленовой группы в цепочке между этиленовыми хромофорами?
- 10. В УФ спектрах 4 диметиламинобензойной кислоты, снятых в этаноле, присутству-ет полоса поглощения с максимумом 288 нм (ϵ 19 0000), а в растворе хлороводородной кис-лоты 270 нм (ϵ 10 000). В чём причина различия в положении максимума поглощения?
- 11. Каковы причины появления электронного спектра непредельных соединений? От чего зависит положение и интенсивность полос поглощения?
- 12. Структурные изомеры -2,2'-и 4,4' диметилдифенилы имеют различные УФ спектры. Какому из изомеров соответствует каждая кривая УФ—спектров? Объясните причину спектральных различий.
- 13. Каковы причины появления электронного спектра карбонильных соединений? От чего зависит положение и интенсивность полос поглощения?
- 14. Определите, каким ароматическим производным п-нитрофенолу и п-нитрофеноляту натрия соответствуют полосы поглощения в электронном спектре —317 нм (є 970), 400 нм (є 18000) Ответ обоснуйте. Какому электронному переходу они соответствуют?
- 1. Основы фотоколориметрии. Опишите методы количественного фотоколориметриче-ского

анализа. Приведите формулы расчета концентрации веществ.

- 2. Навеску глюкозы массой 0.098 г перенесли в химический стакан и добавили 5 мл очищенной воды. Измерили показатель преломления полученного раствора, n = 1.3357. Рефрактометрический фактор глюкозы равен 0.00142, а показатель преломления воды при данной температуре 1.3330. Рассчитайте массовую долю глюкозы в препарате.
- 3. Оптическая плотность раствора, содержащего в 100 мл 1 мг кофеина C8H10O2N4·H2O, равна 0.510 (272 нм в кювете с 1=1 см). Навеску растворимого кофе массой 1.5 г раство-рили в воде и разбавили до 500 мл. Аликвоту полученного раствора 25 мл поместили в мерную колбу вместимостью 500 мл и разбавили до метки. Оптическая плотность этого раствора, измеренная при 272 нм в кювете с 1=1 см, оказалась равной 0.415. Рассчитайте массу кофеина в фунте растворимого кофе. 1 фунт =453.6 г.

M кофеина = 212.1 г/моль.

- 4. Дайте определение следующим понятиям: хромофор, полоса поглощения, интенсивность полосы поглощения, батохромный сдвиг, гипсохромный сдвиг, гиперхромный эффект, гипохромный эффект.
- 5. Объясните различия в спектрах поглощения п-этиламинобензойной кислоты, снятой в этаноле (288 нм, є 19000) и хлороводородной кислоте (270 нм, є 970).
- 3. Для определения меди в препарате из навески массой 0.325 г после растворения и обработки избытком аммиака было получено 250 мл раствора. Оптическая плотность этого раствора в кювете 20 мм при $\lambda = 620$ нм равна 0.254. Молярный коэффициент поглощения тетрааммиаката меди при данной длине волны равен 123 л/моль·см. Рассчитайте со-держание меди (%) в препарате.
- 4. Опишите основные типы электронных переходов в молекуле. Дайте сравнительную характеристику энергии этих переходов, какие из них имеют аналитимческое значение, почему?
- 3. Навеску п-нитроанилина массой 0.0325 г растворили в метаноле в мерной колбе вместимостью 50 мл. Аликвоту полученного раствора 1 мл разбавили метанолом в мерной колбе на 100 мл. Оптическая плотность этого раствора при $\lambda = 368$ нм в кювете с 1 = 10 мм равна 0.802. Рассчитайте значения молярного (ϵ) и удельного (ϵ 1% /1см) коэффициентов поглощения п нитроанилина в метаноле при указанной длине волны. М.м. (п нитроанилина) = 138.1 г/моль; $\rho = 0.792$ г/см3.
- 3. При фотоколориметрическом определении Fe3+ с сульфосалициловой кислотой приготовили ряд стандартных растворов разведением стандартного раствора Fe3+с содержанием 10 мг/мл в мерных колбах объемом 100 мл, измерили оптическую плотность и получили следующие данные:

Vстандарт раст-ра, мл 1 2 3 4 5

A 0.12 0.25 0.37 0.5 0.62

Оптическая плотность анализируемого раствора оказалась равной 0.3. Постройте калибровочный график и определите концентрацию Fe3+ (в мг/мл) и массу в 250 мл раствора.

4. Как изменяются положение и интенсивность полос поглощения $\pi {\to} \pi^*$ - перехода в электронном спектре алкенов при:

увеличении числа этиленовых хромофоров в сопряжении;
появлении ауксохромного заместителя к этиленовому хромофору;
появлении метиленовой группы в цепочке между этиленовыми хромофорами?

5. В УФ — спектрах 4 — диметиламинобензойной кислоты, снятых в этаноле, присутству-ет полоса поглощения с максимумом 288 нм (ϵ 19 0000), а в растворе хлороводородной кислоты — 270 нм (ϵ 10 000). В чём причина различия в положении максимума поглоще-ния?

Tема 1.2. Cпектрофотометрия в $Y\Phi$ - u видимой областях. Yасть 1.

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

- 1. Лаботраторная работа "Определение содержания сульфата меди (II) спектрофофтометрическим методом"
- 1. Подготовка пробы, проведение фотометрической реакции.
- 2. Выбор оптимальной длинвы волны для фотометрирования.
- 3. Приготовление стандартных растворов анализируемого вещества.
- 3. Фотометрирование пробы и стандартных растворов при выбранной длине волны.
- 4. Расчет содержания катионов меди (II) методами сравнения и градуирововчного графика.

Тема 1.3. Спектрофотометрия в УФ- и видимой областях. Часть 2.

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

1. Лабораторная работа "Определение содержания новокаина спектрофотометрическим методом"

Этапы лабораторной работы:

- 1. Приготовление раствора новокаина с последовательным разведением с оптимальной для фотометрирования величиной концентрации.
- 2. Сканирование поглощения исследуемого образца в аналитическом диапазаоне длин волн.
- 3. Выбор оптимальной длины волны для количественного определения новокаина.
- 4. Фотометрирование исследуемого образца при выбранной длине волны относительно раствора сравнения.
- 5. Расчет содержания новокаина на основании полдученных данных.
- 6. Составление отчета.

Тема 1.4. Спектрофотометрия в УФ- и видимой областях Часть 3

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

1. Лабораторная работа "Идентификация соединений на основании элетронных спектров"

Этапы выполнения лабораторной работы:

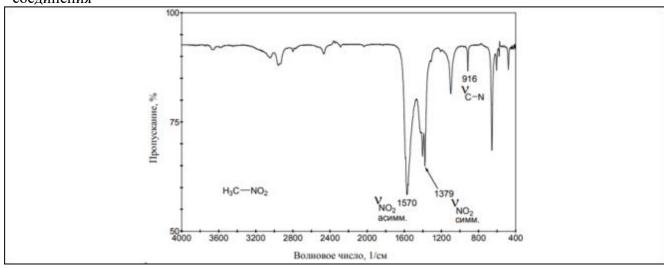
- 1. Приготовление растворов исследуемых образцов в подходящем растворителе.
- 2. Сканирование поглощения исследуемых образцов в аналитическом диапазаоне длин волн.
- 3. Анализ электронных спектров, сопоставление структуры соединения, его хромофорной группы и внутримолекулярного окружения с положением полос поглощения в электронном спектре.
- 4. Составление отчета с выводами.

Тема 1.5. ИК-спектроскопия. Часть 1.

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

1. Лабораторная работа "Функциональный анализ соединений методом ИК-спектроскопии"

Этапы лабораторной работы:


- 1. Подготовка образца сравнения КВг и исследуемого образца прессование дисков (таблеток).
- 2. Сканирование поглощения исследуемого образца в средней ИК-области.
- 3. Идентификация и функциональный анализ исследуемого образца на основании ИК-спектра.
- 4. Составление отчета.

Тема 1.6. ИК-спектроскопия. Часть 2

Форма контроля/оценочное средство: Решение задач

Вопросы/Задания:

1. Произведите отнесение всех полос в ИК -спектре к функциональным группам соединения

Тема 1.7. Рефрактометрия.

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

1. Определение содержания глюкозы в растворе рефрактометрическим методом

Этапы лабораторной работы:

- 1. Подготовка анализируемого раствора.
- 2. Подготовка рефрактометра, проверка нулевой точки прибора.
- 3. Измернение показателя преломления анализируемого раствора.
- 4. Расчет результатов анализа.

Отчет о лабораторной работе должен содержать описание всеэ этапов анализа.

Тема 1.8. Поляриметрия

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

1. Лабораторная работа: Определение содержания глюкозы в растворе поляриметрическим методом анализа

Этапы лабоарторной работы:

- 1. Приготовление анализируемого раствора.
- 2. Подготовка поляриметра к работе.
- 3. Измерение удельного вращения анализируемого раствора.
- 4. Расчет результатов анализа.

Отчет о лабораторной работе должен содержать описание всех этапов анализа

Тема 1.9. Люминесцентный анализ

Форма контроля/оценочное средство: Письменный опрос

Вопросы/Задания:

1. Ответьте на следующие вопросы:

Опишите физические основы методов люминесцентного анализа.

Классифицируйте методы люминесцентного анализа по способам возбуждения люминесценции.

Опишите виды безызлучательных переходов. Каковы причины их появления?

Каково происхождение флуоресценции и фосфоресценции?

- 1. Дайте характеристику спектрам флуоресценции.
- 2. Опишите и прокомментируйте закон Стокса-Ломмеля.
- 3. Опишите и прокомментируйте закон Левшина.
- 4. Что такое квантовый и энергетический выход флуоресценции и как их рассчитать?
- 5. Опишите и прокомментируйте закон закон С.И. Вавилова.
- 6. Как осуществляется количественный флуоресцентный анализ: принципы анализа, условия проведения анализа, люминесцентные реакции?
- 7. Опишите способы определения концентрации вещества (метод градуировочного гра-фика, метод одного стандарта).
- 8. Каково применение флуоресцентного анализа?
- 9. Содержание витамина B1 в таблетке лекарственного препарата определяли флуориметрическим методом. Для проведения анализа растерли в порошок 2 таблетки, растворили в воде и получили 100 мл раствора. Из полученного раствора отобрали 1 мл и разбавили водой до 100 мл. Измерили интенсивность флуоресценции полученного раствора Ix = 58. Приготовили стандартный раствор витамина B1 с содержанием витамина 0.00100 мг/мл, интенсивность его флуоресценции составила Icт = 60. Рассчитайте массу витамина B1 в одной таблетке.

Тема 1.10. Методы атомной спектроскопии

Форма контроля/оценочное средство: Тестовый контроль

Вопросы/Задания:

1. Выберите верный вариант ответа:

Метод атомной абсорбции основан

на измерении интенсивности излучения света возбужденными атомами;

на измерении интенсивности излучения света ионизированными атомами;

на измерении поглощения излучения атомами определяемого элемента;

на измерении переизлучения световой энергии, поглощенной свободными атомами.

В серийных атомно-абсорбционных приборах в качестве источника атомизации используются дуга постоянного и переменного тока

пламя и графитовая кювета

дуга переменного тока и графитовая кювета

пламя и искра

В серийных атомно-эмиссионных приборах в качестве источника атомизации используются пламя

электрическая дуга

лампа накаливания с вольфрамовой нитью

индуктивно-связанная плазма

Метод пламенной фотометрии основан

На измерении интенсивности света, излучаемого возбужденными атомами при введении вещества в пламя.

На измерении переизлучения световой энергии, поглощенной свободными атомами.

На измерении свечения атомов, ионов, молекул, возникающего в результате электронного перехода в этих частицах при их возвращении из возбужденного в основное состояние.

отражает следующая схема аэрозоль испарение растворителя испарения вещества диссоциация -- поглощение -- излучение аэрозоль испарения вещества испарение растворителя диссоциация -- поглощение -- излучение → испарение растворителя испарения вещества аэрозоль \rightarrow поглошение→ диссоциация—излучение Количественный анализ в атомно-эмиссионной спектроскопии основывается на уравнении Планка Бугера-Ламберта-Бера Ломакина-Шайбе Источником излучения в атомно-абсорбционной спектроскопии является лампа накаливания с вольфрамовой нитью лампа с полым катодом галогеновые лампа дейтериевые лампа Количественный анализ в атомно-абсорбционной спектроскопии основывается на уравнении Бугера-Ламберта-Бера Ломакина-Шайбе Серийными атомно-эмиссионными приборами регистрируется I lg I 0/(I) lg I/(I 0)Серийными атомно-абсорбционными приборами регистрируется I lg I 0/(I) lg I/(I 0)В серийных атомно-абсорбционных приборах в качестве источника атомизации используются 1) дуга постоянного и переменного тока 2) пламя и графитовая кювета 3) дуга переменного тока и графитовая кювета 4) пламя и искра

Тема 1.11. Контрольная работа по разделу "Оптические методы анализа"

Форма контроля/оценочное средство: Контрольная работа

Процессы в пламени при пламенно-фотометрических определениях

Вопросы/Задания:

- 1. Ответьте н а следующие вопросы и произведите вычисления:
- 1. Навеску глюкозы массой 0.098 г перенесли в химический стакан и добавили 5 мл очищенной воды. Измерили показатель преломления полученного раствора, n=1.3357. Рефрактометрический фактор глюкозы равен 0.00142, а показатель преломления воды при данной температуре -1.3330. Рассчитайте массовую долю глюкозы в препарате.
- 2. Оптическая плотность раствора, содержащего в 100 мл 1 мг кофеина C8H10O2N4·H2O,

равна 0.510 (272 нм в кювете с l=1 см). Навеску растворимого кофе массой 1.5 г раство-рили в воде и разбавили до 500 мл. Аликвоту полученного раствора 25 мл поместили в мерную колбу вместимостью 500 мл и разбавили до метки. Оптическая плотность этого раствора, измеренная при 272 нм в кювете с l=1 см, оказалась равной 0.415. Рассчитайте массу кофеина в фунте растворимого кофе. l фунт = 453.6 г.

M кофеина = 212.1 г/моль.

- 3. Дайте определение следующим понятиям: хромофор, полоса поглощения, интенсивность полосы поглощения, батохромный сдвиг, гипсохромный сдвиг, гиперхромный эффект, гипохромный эффект.
- 4. Объясните различия в спектрах поглощения п-этиламинобензойной кислоты, снятой в этаноле (288 нм, є 19000) и хлороводородной кислоте (270 нм, є 970).
- 5. Навеску NaCl массой 0.100 г перенесли в химический стакан, добавили 5 мл очищен-ной воды. Измерили показатель преломления полученного раствора n = 1.3362. Рассчи-тайте массовую долю NaCl в препарате. Воспользуйтесь необходимыми справочными таблицами.
- 6. Для определения меди в препарате из навески массой 0.325 г после растворения и обработки избытком аммиака было получено 250 мл раствора. Оптическая плотность этого раствора в кювете 20 мм при $\lambda = 620$ нм равна 0.254. Молярный коэффициент поглощения тетрааммиаката меди при данной длине волны равен 123 л/моль·см. Рассчитайте со-держание меди (%) в препарате.
- 7. Опишите основные типы электронных переходов в молекуле. Дайте сравнительную характеристику энергии этих переходов, какие из них имеют аналитимческое значение, почему?
- 8 Соотнесите электронные спектры со структурами бензиламина, м-толуидина и хлорида анилиния. Ответ обоснуйте.
- 9. Навеску п—нитроанилина массой 0.0325 г растворили в метаноле в мерной колбе вместимостью 50 мл. Аликвоту полученного раствора 1 мл разбавили метанолом в мерной колбе на 100 мл. Оптическая плотность этого раствора при $\lambda = 368$ нм в кювете с 1 = 10 мм равна 0.802. Рассчитайте значения молярного (ϵ) и удельного (ϵ 1% /1см) коэффициентов поглощения п нитроанилина в метаноле при указанной длине волны. М.м. (п нитроанилина) = 138.1 г/моль; $\rho = 0.792$ г/см3.
- 10. Каковы причины появления электронного спектра ацетиленовых соединений? От чего зависит положение и интенсивность полос поглощения?
- 11. Под действием У Φ облучения происходит изомеризация 3 фенилпропена в 1 фенилпропен. Определите, какая из кривых, приведённых на рис. соответствует исходному соединению, а какая продукту изомеризации.
- 12. При фотоколориметрическом определении Fe3+ с сульфосалициловой кислотой приготовили ряд стандартных растворов разведением стандартного раствора Fe3+с содержанием 10 мг/мл в мерных колбах объемом 100 мл, измерили оптическую плотность и получили следующие данные:

Оптическая плотность анализируемого раствора оказалась равной 0.3. Постройте калибровочный график и определите концентрацию Fe3+ (в мг/мл) и массу в 250 мл раствора.

13. Как изменяются положение и интенсивность полос поглощения $\pi \! \to \! \pi^*$ - перехода в
электронном спектре алкенов при:
□ увеличении числа этиленовых хромофоров в сопряжении;
□ появлении ауксохромного заместителя к этиленовому хромофору;
□ появлении метиленовой группы в цепочке между этиленовыми хромофорами?
14 В УФ – спектрах 4 – диметиламинобензойной кислоты, снятых в этаноле, присутству-ет
полоса поглощения с максимумом 288 нм (є 19 0000), а в растворе хлороводородной кислоты –
270 нм (є 10 000). В чём причина различия в положении максимума поглоще-ния?
Раздел 2. Спектроскопия ядерного магнитного резонанаса
Тема 2.1. Основы спектроскопии ядерного магнитного резонанса
Форма контроля/оценочное средство: Устный опрос
Вопросы/Задания:
1. Ответьте на следующие вопросы:
1. Ядра каких атомов могут быть изучены методом спектроскопии ЯМР?
2. Какова физическая природа магнитного резонанса ядер?
3. Сформулируйте условия магнитного резонанса ядер.
4. Что показывает константа экранирования? Ядра каких атомов экранированы от влияния
внешнего поля сильнее?
5. Что такое магнитно эквивалентные и магнитно неэквивалентные атомы?
6. что такое химический сдвиг и шкала химических сдвигов?
7. Опишите шкалу спектра ЯМР.
8. Что такое спин-спиновые взаимодействия, мультиплентность сигналов ЯМР?
9. Что показывает интегральная кривая в спектре ЯМР?
10. Какую информацию дает спектр ЯМР?
11. Какие сущетсвуют споссобы подавления спин-спинового взаимодействия ядер 1H-13C?
12. Что такое эффект Оверхаузера?
Тема 2.2. Спектроскопия протонного магнитного резонанса
Форма контроля/оценочное средство: Решение задач
Вопросы/Задания:
1. На основании приведенного спектра 1Н ЯМР сделайте предположение о структуре
этого вещества.
Тема 2.3. Спектроскопия магнитного резонанаса на ядрах 13С.
Форма контроля/оценочное средство: Решение задач
Вопросы/Задания:
1. На основании спектра 13С ЯМР сделайте предположение о структуре соединения:
Тема 2.4. Контрольная работа "Спектроскопия ядерного магнитного резонанаса"
Форма контроля/оценочное средство: Контрольная работа
Вопросы/Задания:
1. На основании спектров 1Н ЯМР и спектров 13С ЯМР с развязкой от протонов
сделайте предположение о структуре соединения
Раздел 3. Масс-спектрометрический анализ
Тема 3.1. Основы масс-спектрометрического анализа.
Форма контроля/оценочное средство: Опрос
Вопросы/Задания:
1. Ответьте на следующие вопросы:
1. Каковы физические основы масс-спектрометрического анализа?
2. Опишите основные узлы масс-спектрометра, дайте им характеристику?
3. Опишите способы ионизации, примененяемые в масс-спектрометрии. Дайте им
сравнительную оценку.
4. Опишите виды образующихся ионов.
5. Что такое масс-спектр?
6. Какую информацию дает масс-спектр?
7. какие сущетсвуют подходы к интепретированию масс-спектров?
1

Тема 3.2. Масс-спектры различных классов органических соединений. Форма контроля/оценочное средство: Решение задач Вопросы/Задания:

1. Опишите основные направления фрагментации соединения на основании масс-спектра. Отметьте пик молекулярного и базового иона

Раздел 4. Комбинированное использование методов ФХМА для количественного определения и установления строения соединений

Тема 4.1. Установление строения органических соединений.

Форма контроля/оценочное средство: Решение задач

Вопросы/Задания:

- 1. Выскажите предположение о строении соединения, используя УФ-, ИК-, 1Н ЯМР-, 13С ЯМР-, масс-спектры.
- Тема 4.2. УИРС. Комбинированное использование различных методов физико-химического анализа для идентификации и количественного определения веществ. Часть 1.

Форма контроля/оценочное средство: Отчет по лабораторной работе

Вопросы/Задания:

- 1. Лабораторная работа "Применение различных методов химического и физико-химического анализа для идентификации и количественного определения вещества"
- 1. Анализ новокаина.

Компоненты анализа.

- 1. Провести количественное определение содержания новокаина методом нитритометрического титрования.
- 2. Произвести колдичественное определение содержания новокаина рефрактометрическим методом.
- 3. Произвести количественное определение новокаина рефрактометрическим методом.
- 4. Произвести идентификацию новокаина методом ИК-спектроскопии.
- 5. Произвести индентификацию новокаина методом УФ-спектроскопии.
- 6. Провести анализ 1Н и 13С ЯМР спектра новокаина.
- 7. Провести анализ мас-спектра новокаина.
- Тема 4.3. УИРС. Комбинированное использование различных методов физико-химического анализа для идентификации и количественного определения веществ. Часть 1.

Форма контроля/оценочное средство: Отчет по лабораторной работе Вопросы/Задания:

- 1. Лабораторная работа "Применение различных методов химического и физико-химического анализа для идентификации и количественного определения вещества" Этапы лабораторной работы.
- 1. Определение содержания салициловой кислоты рефрактометричсеким методом
- 2. Определение содержания салициловой кислоты бромометрическим титрованием
- 3. Определение содержания алкалиметрическим методом
- 4. Определение содержания салициловой кислоты спектрофотометрическим методом
- 4. Идентификация салициловой кислоты методом ИК-спектроскопии
- 5. Идентификация салициловой кислоты методом УФ-спектроскопии
- 6. Анализ ЯМР -спектров салициловой кислоты
- 7. Анализ масс-спектров салициловой кислоты
- Тема 4.4. Контрольная работа "Применение методов ЯМР- и масс-спетрометрии для установления строения органических соединений"

Форма контроля/оценочное средство: Контрольная работа Вопросы/Задания:

1. Ответьте на следующие вопросы:

- 1. Оптическая плотность стандартного раствора вещества с концентрацией $2 \cdot 10$ -4 моль/л в кювете 10 мм равна 0.392. Рассчитайте величину молярного коэффициента поглощения этого вещества в растворе. Чему равна концентрация этого вещества в растворе с оптиче-ской плотностью 0.568? (М = 289 г/моль).
- 2. Приведены спектры поглощения фенола в растворе гексана, спирта и водном растворе (pH=13). Определите, какой электронный спектр, в каком растворителе записан.
- Рассчитайте концентрацию кальций хлорида в растворе, если показатель преломления, измеренный при 20°C равен 1,3564. Воспользуйтесь необ-ходимыми справочными данными.
- 3. Навеску амидопирина массой 0,0500 г поместили в химический стакан и добавили 5,00 мл воды. Измерили показатель преломления полученно-го раствора, nx=1,3352. Рассчитайте массовую долю амидопирина в пре-парате. Воспользуйтесь необходимыми справочными данными.
- 4. Показатель преломления водного раствора гексаметилентетрамина, измеренный при 20° С, равен 1,3890. Показатели преломления двух стан-дартных растворов W1% = 30,45% и W2%=32,70% равны 1,3870 и 1,3910, соответственно. Рассчитайте содержание (%) гексаметилентетра-мина в этом растворе.
- 5. Навеску глюкозы массой 0,0980 г перенесли в химический стакан и добавили 5,00 мл очищенной воды. Измерили показатель преломления полученного раствора, nx = 1,3357. Рефрактометрический фактор глюко-зы равен 0,00142, а показатель преломления воды при данной температу-ре 1,3330. Рассчитайте массовую долю (%) глюкозы в препарате
- 6. В ИК-спектре о-нитротолуола имеются полосы поглощения: 2960, 2870, 1520, 1465, 1380, 1330, 850, 750 см-1. После проведения реакции в спектре исчезают полосы 1520, 1330, 850, 750 см-1, и появляются новые полосы поглощения 3420, 3340, 1644 см-1 и широкая полоса при 680см-1. Определите, какая реакция была проведена с о-нитроанилином?
- 7. Регламентируемое содержание витамина B12 в растворе для инъек-ций составляет 0.18-0.22 мг/мл. Для анализа взяли 1.00 мл раствора ви-тамина B12 для инъекций, прибавили 9.00 мл воды, фотометрировали при $\lambda = 361$ нм в кювете 1.00 см, оптическая плотность раствора оказалась равной 0.393. Рассчитайте содержание витамина B12 (в мг/мл) в исходном растворе, если его удельный коэффициент поглощения равен 207. Соот-ветствует ли содержание витамина B12 в инъекции требованиям регла-мента?
- 8. Для спектрофотометрического определения содержания левомице-тина в таблетках препарата приготовили 1,00 л водного раствора, содер-жащего 0,0120 г порошка растертых

таблеток, фотометрировали при

- $\lambda = 278$ нм в кювете с толщиной слоя 1,00 см, и нашли, что оптическая плотность равна 0,12. Рассчитайте массу левомицетина (г) в одной таб-летке, если его удельный коэффициент поглощения равен 298, а масса таблетки составляет 0,300 г.
- 9. Навеску витамина B2 (рибофлавина) массой $0{,}0650$ г растворили в мерной колбе объемом 1000 мл в присутствии уксусной кислоты. Алик-воту полученного раствора объемом $10{,}00$ мл разбавили раствором аце-тата натрия в мерной колбе объемом $100{,}0$ мл и измерили оптическую плотность при $\lambda = 267$ нм в кювете с толщиной слоя $1{,}00$ см, оптическая плотность оказалась равной $0{,}574$. Рассчитайте содержание (%) рибо-флавина в препарате, если молярный коэффициент поглощения рибо-флавина при $\lambda = 267$ нм равен 32000 л·моль- $1{\cdot}$ см- $1{.}$ М(С17H20N4O6) =

376,37 г/моль.

- 10. Для проведения контроля содержания витамина В1 (тиамина хлори-да) в таблетке лекарственного препарата, тиамина хлорид из порошка двух растертых таблеток извлекли водой, и 1,00 мл полученного раство-ра разбавили в мерной колбе объемом 100,0 мл. Из аликвоты объемом 1,00 мл полученного раствора бутанолом извлекли тиамина хлорид и измерили интенсивность флуоресценции, Ix = 58. Приготовили стандарт-ный раствор тиамина хлорида с концентрацией 0,0010 мг/мл и в тех же условиях измерили интенсивность его флуоресценции, Ix = 60. Рассчи-тайте массу тиамина хлорида в одной таблетке.
- 11. Раствор хинина в 0,05М H2SO4 с концентрацией 0,4000 мкг/мл имеет интенсивность флуоресценции Іфл = 120, а с концентрацией 0,600 мкг/мл Іфл = 170. Рассчитайте массу хинина в 100,0 мл раствора, который в таких же условиях имеет интенсивность флуоресценции Іфл = 140.
- 12. Анализируемый раствор фолиевой кислоты имеет интенсивность флуоресценции Іфл = 100. При добавлении к данному раствору 10,00 мкг фолиевой кислоты интенсивность флуоресценции возросла до Іфл = 150. Рассчитайте массу фолиевой кислоты в исходном растворе.

5. Оценочные материалы промежуточной аттестации